# Lichens and Fungi. Part 16.<sup>1</sup> The Crystal and Molecular Structures of Stictane-3β,22α-diol and 22α-Hydroxy-3,4-secostictan-3-oic Acid

By R. Edward Corbett and Jim Simpson,\* Department of Chemistry, University of Otago, Dunedin, New Zealand

Eng Meng Goh, Brian K. Nicholson, and Alistair L. Wilkins,\* Department of Chemistry, University of Waikato, Hamilton, New Zealand

Ward T. Robinson, Department of Chemistry, University of Canterbury, Christchurch, New Zealand

The crystal and molecular structures of the title compounds have been determined from X-ray diffractometer data by direct methods. Crystals of stictane-3 $\beta$ ,22 $\alpha$ -diol (1) are monoclinic, space group C2 with a = 24.14(1), b = 7.606(3), c = 15.900(7) Å,  $\beta = 117.3(1)^\circ$ , and Z = 4. The structure was refined by full-matrix least-squares to R 0.057 for 1 973 observed reflections. The structure confirmed the boat conformation proposed for the B ring of the triterpane. Crystals of 22 $\alpha$ -hydroxy-3,4-secostictan-3-oic acid (3b) are monoclinic, space group P2<sub>1</sub> with a = 8.938(2), b = 27.789(7), c = 6.687(2) Å,  $\beta = 111.36(2)^\circ$ , and Z = 2. The structure was refined by fullmatrix least-squares to R 0.087 for 887 observed reflections. The B ring is shown to have a slightly flattened chair conformation and to possess one equatorial and three axial substituent groups.

THE chair, boat, chair, chair, chair conformational sequence illustrated in structure (1) was proposed <sup>2</sup> by us for stictane, the parent of the ten new triterpanes isolated from the extractives of three New Zealand *Pseudocyphellaria* lichen species. Subsequently, we demonstrated <sup>3</sup> the identity of stictane- $3\beta$ ,22 $\alpha$ -diol (1) with retigeradiol for which structure (2) (taraxerane- $3\beta$ ,19 $\beta$ diol) had been advanced.<sup>4</sup> The physical and spectroscopic properties of the triterpane hydrocarbon, stictane, derived from the title diol (1) differed <sup>5</sup> from those of taraxerane.

More recently we proposed <sup>6</sup> structure (3a) for one of three new triterpenoids isolated from *Pseudocyphellaria degelii*. These new triterpenoids were considered to be the tetracyclic analogues of the parent group of pentacyclic stictane triterpanes. Since the structures of neither of the new groups of triterpenoids have been rigorously established (the published structures being deduced principally from analyses of spectral data  $^{2,7,8}$ ) X-ray crystallographic determinations of stictane- $3\beta$ , $22\alpha$ diol (1) and a derivative of compound (3a), the saturated tetracyclic triterpane acid (3b), were undertaken.

### EXPERIMENTAL

Suitable needle-shaped crystals of the title diol (1) were obtained from acetone solution.

Crystal Data.—C<sub>30</sub>H<sub>52</sub>O<sub>2</sub>, M = 444.8. Monoclinic, a = 24.14(1), b = 7.606(3), c = 15.900(7) Å,  $\beta = 117.3$  (1)°, U = 2594 Å<sup>3</sup>,  $D_m = 1.13$ ,  $D_c = 1.14$  g cm<sup>-3</sup>, Z = 4. Space group was uniquely determined as C2 for the enantiomeric molecule from systematic absences (h0l if h = 2n and hk0 if h + k = 2n). Space group and unit cell information were obtained from precession photography (Cu- $K_{\alpha}$ ,  $\lambda = 1.5418$  Å). Three-dimensional intensity data were collected using the  $\theta$ -2 $\theta$  scanning mode with nickel-filtered



Cu- $K_{\alpha}$  radiation on a Hilger and Watts four-circle, computercontrolled diffractometer. The intensities were corrected for Lorentz and polarisation effects but no absorption corrections were applied. Of the 1893 reflections collected, 1793 had values of  $F_0^2$  that were greater than three times their estimated standard deviations and these were used in the final refinement of structural parameters.

Hydrogenation of  $22\alpha$ -hydroxy-3,4-secostict-4(23)-en-3oic acid (3a) over Adam's catalyst afforded the title hydroxyacid (3b). Suitable rectangular prisms were obtained from acetone solution.

Crystal Data.— $C_{30}H_{52}O_3(CH_3)_2CO$ , M = 518.8. Monoclinic, a = 8.938(2), b = 27.789(7), c = 6.687(2) Å,  $\beta =$ 111.36 (2)°, U = 1.546.7 Å<sup>3</sup>,  $D_m = 1.12$ ,  $D_c = 1.11$  g cm<sup>-3</sup>, Z = 2. The space group was uniquely determined as  $P2_1$ from systematic absences (0k0 if k = 2n + 1). Space group and unit cell information were obtained from precession photography (Cu- $K_{\alpha}$ ,  $\lambda = 1.5418$  Å). Three-dimensional intensity data were collected using the  $\theta$ -2 $\theta$ scanning mode with zirconium-filtered Mo- $K_{\alpha}$  radiation on a Hilger and Watts four-circle, computer-controlled diffractometer. The intensities were corrected for Lorentz and polarisation effects, but not for absorption which was very small. Of the 1863 reflections collected, 887 had values of  $F_0^2$  that were equal or greater than twice their estimated standard deviations and these were used in the final refinement of structural parameters.

Structure Solution of Stictane- $3\beta$ ,  $22\alpha$ -diol (1) and Refinement.-The structure of the diol (1) was solved by direct methods using the program MULTAN.<sup>9</sup> Inputting stereochemical information on the ring C-D-E fragment, as determined for (3b) (see below), into the structure factor normalisation procedure yielded an E map in which 18 carbon atoms appeared to be located in reasonable positions and the remaining heavy atoms were found in subsequent difference-Fourier, least-squares refinement cycles using the program system SHELX.<sup>10</sup> Two cycles of full-matrix least-squares refinement with isotropic thermal parameters for the ring carbon atoms and anisotropic refinement of the methyl carbon and hydroxy carbon atoms resulted in R 0.118. A difference Fourier synthesis revealed electron density maxima in reasonable locations for the hydrogen atoms and these were input with idealised positions and C-H = 1.00 Å. An overall isotropic thermal parameter was assigned to each type of hydrogen atom and a weighting scheme based on counting statistics was introduced. Examination of observed and calculated structure factors revealed evidence for secondary extinction. Two cycles of refinement, in which the calculated structure factor was empirically modified using an isotropic extinction parameter,<sup>11</sup> reduced the discrepancies between observed and calculated structure factors to acceptable values. The final conventional Rfactor was 0.057 and R'  $(=\Sigma w^{\frac{1}{2}}\Delta/\Sigma w^{\frac{1}{2}}F_{o})$  0.073. A final difference Fourier synthesis revealed no peaks higher than those earlier assigned to hydrogen atoms and the weighting scheme appeared reasonable. Figure 1 is a perspective view of the molecule looking towards the  $\alpha$ -face.

Structure Solution of  $22\alpha$ -Hydroxy-3,4-secostictan-3-oic Acid (3b) and Refinement.—The structure was solved by direct methods using the program MULTAN. A plausible 26 atom fragment was recognized in the seventh ranked figure of merit solution offered by the program. Inputting these atoms with isotropic temperature factors into the refinement program SHELX gave, after one cycle of full-matrix leastsquares refinement, an R value of 0.32, and also revealed the



FIGURE 1 General view of the molecule of stictane-3 $\beta$ ,22 $\alpha$ -diol, looking towards the  $\alpha$ -face, showing the atom numbering scheme

presence of an acetone solvate molecule hydrogen bonded to the C(22) hydroxy-group. Isotropic least-squares refinement of this resulted in R 0.13. A difference Fourier synthesis revealed electron density maxima in reasonable locations for the hydrogen atoms and these were input with idealised positions and C-H 1.08 Å. An overall isotropic thermal parameter was assigned to each type of hydrogen atom, and a weighting scheme based on counting statistics was introduced. Four further cycles of full-matrix calculations converged with R 0.087 and R' (= $\Sigma w^{\dagger} \Delta / \Sigma w^{\dagger} F_{o}$ )



FIGURE 2 A perspective view of  $22\alpha$ -hydroxy-3,4-secostictan-3-oic acid showing the atom numbering scheme

0.078. No abnormal discrepancies were found between observed and calculated structure factors for the reflections not used in the refinement. Figure 2 is a perspective view of the molecule showing the atomic numbering scheme.

#### **RESULTS AND DISCUSSION**

The final bond lengths and angles of the title compounds appear in Table 1. Final atom co-ordinates appear in Tables 2 and 3. Tables of the thermal parameters, torsion angle and mean plane data, calculated and observed structure factors, and views of the respective unit cells have been deposited in Supplementary Publication No. SUP 233841 (31 pp.).\* The torsion angle and mean plane data show that in the diol (1) ring B adopts a twisted boat conformation essentially identical to that determined <sup>12</sup> for the structurally analogous fusidic acid-derived steroid  $4\alpha,8\alpha,14\beta$ -trimethyl-18-nor- $5\alpha,9\beta,13\beta$ -androstan-17-one (4). In accord with expectations <sup>12-14</sup> steric crowding around the C(8), C(9), and

<sup>\*</sup> For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc., Perkin Trans. 2, 1981, Index Issue.

(a) Bonds

### TABLE 1

# Interatomic distances (Å) and angles (°) for stictane-3 $\beta$ ,22 $\alpha$ -diol (1a) and 22 $\alpha$ -hydroxy-3,4-secostictan-3-oic acid (3b) with standard deviations in parentheses

| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( <b>1</b> a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <b>3</b> b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (la)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( <b>3</b> b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} C(1)-C(2)\\ C(1)-C(10)\\ C(2)-C(3)\\ C(3)-C(4)\\ C(4)-C(5)\\ C(4)-C(23)\\ C(4)-C(23)\\ C(4)-C(24)\\ C(5)-C(6)\\ C(5)-C(10)\\ C(6)-C(7)\\ C(7)-C(8)\\ C(8)-C(9)\\ C(8)-C(9)\\ C(8)-C(14)\\ C(8)-C(26)\\ C(9)-C(11)\\ C(10)-C(25)\\ C(11)-C(12)\\ C(12)-C(13)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.524(6) $1.524(6)$ $1.537(6)$ $1.514(8)$ $1.559(8)$ $1.555(6)$ $1.536(9)$ $1.546(6)$ $1.509(8)$ $1.547(7)$ $1.532(5)$ $1.561(7)$ $1.552(6)$ $1.614(6)$ $1.546(7)$ $1.558(6)$ $1.530(7)$ $1.556(7)$ $1.532(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (.542)(26) $1.542(26)$ $1.579(24)$ $1.514(27)$ $1.580(24)$ $1.484(28)$ $1.532(29)$ $1.543(26)$ $1.578(26)$ $1.508(24)$ $1.508(24)$ $1.547(26)$ $1.563(25)$ $1.596(24)$ $1.576(24)$ $1.576(24)$ $1.523(25)$ $1.523(25)$ $1.523(25)$ $1.523(25)$ $1.523(25)$ $1.523(25)$ $1.523(25)$ $1.523(23)$ $1.523(25)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.523(23)$ $1.5$                                                                                                                                                                             | $\begin{array}{c} C(13)-C(14)\\ C(13)-C(18)\\ C(14)-C(15)\\ C(14)-C(27)\\ C(15)-C(16)\\ C(16)-C(17)\\ C(17)-C(18)\\ C(17)-C(22)\\ C(18)-C(19)\\ C(18)-C(28)\\ C(19)-C(20)\\ C(20)-C(21)\\ C(21)-C(22)\\ C(21)-C(29)\\ C(21)-C(29)\\ C(21)-C(30)\\ C(3)-O(1)\\ C(3)-O(2)\\ C(22)-O(2)\\ C(22)-O(2)\\ C(22)-O(2)\\ C(22)-O(2)\\ C(22)-O(2)\\ C(22)-O(3)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-5)<br>1.564(6)<br>1.564(6)<br>1.557(7)<br>1.522(6)<br>1.532(7)<br>1.532(7)<br>1.539(7)<br>1.539(7)<br>1.540(8)<br>1.519(6)<br>1.535(7)<br>1.543(7)<br>1.543(7)<br>1.522(8)<br>1.419(6)<br>1.425(7)                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.552(25)\\ 1.538(25)\\ 1.550(26)\\ 1.574(23)\\ 1.557(25)\\ 1.474(25)\\ 1.576(26)\\ 1.551(26)\\ 1.551(26)\\ 1.547(24)\\ 1.539(25)\\ 1.551(26)\\ 1.562(26)\\ 1.488(27)\\ 1.578(28)\\ 1.560(28)\\ 1.308(24)\\ 1.150(23)\\ 1.405(21)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (b) Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / _ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} C(2)-C(1)-C(10)\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(2)-C(3)-O(1)\\ C(2)-C(3)-O(2)\\ O(1)-C(3)-O(2)\\ C(4)-C(3)-O(1)\\ C(3)-C(4)-C(23)\\ C(3)-C(4)-C(23)\\ C(3)-C(4)-C(23)\\ C(3)-C(4)-C(24)\\ C(5)-C(4)-C(24)\\ C(5)-C(4)-C(24)\\ C(23)-C(4)-C(24)\\ C(4)-C(5)-C(6)\\ C(4)-C(5)-C(10)\\ C(6)-C(5)-C(10)\\ C(6)-C(5)-C(10)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-C(10)\\ C(7)-C(8)-C(26)\\ C(7)-C(8)-C(26)\\ C(7)-C(8)-C(26)\\ C(1)-C(10)-C(26)\\ C(3)-C(10)-C(25)\\ C(1)-C(10)-C(25)\\ C(5)-C(10)-C(25)\\ C(5)-C(10)-C(25)\\ C(1)-C(10)-C(25)\\ C(10)-C(10)-C(25)\\ C(10)-C(10)$ | $(1a) \\112.2(3) \\113.6(4) \\115.5(5) \\109.6(4) \\111.1(4) \\107.2(5) \\111.9(4) \\108.9(4) \\115.4(4) \\107.1(4) \\117.2(4) \\107.1(4) \\117.6(4) \\117.2(4) \\109.7(4) \\108.6(4) \\114.5(4) \\109.8(3) \\109.7(4) \\108.3(4) \\109.7(4) \\108.3(4) \\107.4(4) \\110.2(4) \\113.3(3) \\117.9(4) \\111.6(3) \\112.2(4) \\107.1(4) \\115.5(3) \\107.8(4) \\108.8(4) \\114.0(3) \\109.9(4) \\108.9(4) \\108.9(4) \\108.8(4) \\114.0(3) \\109.9(4) \\108.9(4) \\108.8(4) \\114.0(3) \\109.9(4) \\108.8(4) \\114.0(3) \\109.9(4) \\108.8(4) \\114.0(3) \\109.9(4) \\100.8(4) \\109.9(4) \\100.8(4) \\109.9(4) \\100.8(4) \\109.9(4) \\100.8(4) \\109.9(4) \\100.8(4) \\109.9(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.9(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4) \\100.8(4)$ | $(3b) \\114.7(1.5) \\111.5(1.6) \\109.8(2.0) \\126.1(2.3) \\124.1(2.4) \\119.8(1.8) \\107.1(1.8) \\109.2(1.9) \\116.1(1.6) \\109.2(1.9) \\116.1(1.6) \\117.0(1.6) \\115.8(1.7) \\112.0(1.6) \\115.8(1.7) \\112.0(1.6) \\110.4(1.7) \\112.1(1.6) \\106.6(1.7) \\107.8(1.5) \\110.2(1.6) \\109.7(1.5) \\118.5(1.6) \\100.8(1.6) \\113.2(1.5) \\108.0(1.5) \\111.4(1.4) \\106.4(1.5) \\110.8(1.6) \\110.8(1.6) \\110.8(1.6) \\110.4(1.6) \\100.8(1.6) \\110.4(1.6) \\100.8(1.6) \\110.4(1.6) \\100.8(1.6) \\110.4(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.4(1.6) \\100.8(1.6) \\100.4(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6) \\100.8(1.6)$ | $\begin{array}{c} C(11)-C(12)-C(13)\\ C(12)-C(13)-C(14)\\ C(12)-C(13)-C(18)\\ C(14)-C(13)-C(18)\\ C(8)-C(14)-C(13)\\ C(8)-C(14)-C(13)\\ C(8)-C(14)-C(15)\\ C(13)-C(14)-C(27)\\ C(13)-C(14)-C(27)\\ C(15)-C(14)-C(27)\\ C(15)-C(16)-C(17)\\ C(15)-C(16)-C(17)\\ C(16)-C(17)-C(18)\\ C(15)-C(18)-C(17)\\ C(13)-C(18)-C(17)\\ C(13)-C(18)-C(17)\\ C(13)-C(18)-C(19)\\ C(13)-C(18)-C(28)\\ C(17)-C(18)-C(28)\\ C(19)-C(18)-C(28)\\ C(19)-C(20)-C(21)\\ C(20)-C(21)-C(29)\\ C(20)-C(21)-C(29)\\ C(22)-C(21)-C(29)\\ C(22)-C(21)-C(30)\\ C(22)-C(21)-C(30)\\ C(22)-C(21)-C(30)\\ C(17)-C(22)-C(21)\\ C(22)-C(21)-C(30)\\ C(17)-C(22)-C(21)\\ C(22)-C(21)-C(30)\\ C(30)\\ C(30)-C(30)\\ C(30)\\ C(30)-C(30)\\ C(30)\\ C(30)-C(30)\\ C(30)\\ C(30)\\ C(30)-C(30)\\ C(30)\\ C(30)\\$ | $ \begin{array}{c} (1a) \\ 112.0(4) \\ 110.9(3) \\ 114.1(4) \\ 116.3(4) \\ 108.8(4) \\ 108.5(3) \\ 109.8(3) \\ 109.8(3) \\ 109.8(3) \\ 109.8(3) \\ 109.8(3) \\ 112.2(4) \\ 108.0(4) \\ 113.6(4) \\ 113.6(4) \\ 110.1(4) \\ 111.3(3) \\ 113.2(4) \\ 107.9(4) \\ 109.4(4) \\ 112.3(3) \\ 106.3(3) \\ 112.8(4) \\ 107.9(4) \\ 113.2(4) \\ 107.9(4) \\ 113.2(4) \\ 115.2(5) \\ 109.9(3) \\ 108.0(5) \\ 109.9(4) \\ 110.8(5) \\ 109.9(4) \\ 113.7(4) \\ 109.2(4) \\ 111.4(3) \\ \end{array} $ | $(3b) \\ 114.1(1.6) \\ 110.0(1.4) \\ 116.6(1.6) \\ 117.1(1.6) \\ 110.1(1.6) \\ 110.8(1.5) \\ 110.9(1.5) \\ 110.9(1.5) \\ 111.1(1.6) \\ 103.8(1.6) \\ 110.8(1.7) \\ 112.0(1.7) \\ 106.8(1.7) \\ 112.0(1.7) \\ 106.8(1.7) \\ 114.8(1.7) \\ 109.4(1.6) \\ 107.3(1.7) \\ 109.4(1.6) \\ 107.3(1.7) \\ 111.5(1.7) \\ 104.6(1.6) \\ 114.3(1.7) \\ 109.2(1.7) \\ 114.2(1.7) \\ 110.3(1.9) \\ 111.4(1.8) \\ 108.2(1.9) \\ 111.3(1.8) \\ 100.5(1.5) \\ 111.3(1.8) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 111.3(1.8) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 111.3(1.8) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5) \\ 100.5(1.5$ |
| C(9)-C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112.3(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112.2(1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(21)-C(22)-O(3)<br>C(21)-C(22)-O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112.4(1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

C(14) atoms results in the lengthening of the C(8)– C(14) [1.614(6)] and C(9)–C(10) [1.588(6)] bonds whilst the C(5)–C(6)[1.509(8) Å] bond appears to have been shortened to a greater extent in  $4\alpha,8\alpha,14\beta$ -trimethyl-18nor- $5\alpha,9\beta,13\beta$ -androstan-17-one (4). The presence in the hydroxy-acid (3b) of a chair ring B system is consistent with the view that the parent naturally occurring triterpene acid (3a) is derived from a parent pentacyclic triterpenoid [most probably the ketol (6)], by rupture of the C(3)–C(4) bond and with reversion of the boat ring B system to a chair conformation.

Since the interconversion of stictane- $3\beta$ ,  $22\alpha$ -diol (1)

and  $22\alpha$ -hydroxystictan-3-one (6) has been achieved <sup>2</sup> the absolute configuration of the diol can be assigned from a comparison of the o.r.d. curves of the ketol (6) and alisol-A (23,24)-acetonide 11-monobromoacetate (5).<sup>15,16</sup> Because of the close correspondence in the signs and magnitudes of their respective o.r.d. curves it follows that the ring A-B portions of these substances have identical absolute configurations. Although caution must be exercised in the correlation of solid and solution state conformations, it is now apparent that in fusidic acid type boat ring B steroids and triterpenoids, the presence in ring A at C(3), but not at C(2),<sup>2</sup> of a keto functionality

### TABLE 2

Atom positional parameters for stictane- $3\beta$ ,22 $\alpha$ -diol (1)

| (a) Non-h        | ydrogen atoms                 |                             |                          |
|------------------|-------------------------------|-----------------------------|--------------------------|
| Atom             | x/a                           | y b                         | z c                      |
| C(1)             | 0.890 2(2)                    | 1.228 7(0)                  | 1.1256(3)                |
| C(2)             | $0.923 \ 5(2)$                | 1.257 2(8)                  | 1.232 4(3)               |
| C(3)             | $0.926 \ 1(2)$                | 1.094 1(7)                  | 1.288 7(3)               |
| C(4)             | $0.951\ 2(2)$                 | 0.925 1(7)                  | 1.262 2(3)               |
| C(5)             | $0.915\ 7(2)$                 | 0.911 1(6)                  | 1.152 5(3)               |
| C(6)             | $0.924 \ 5(2)$                | 0.745 7(7)                  | 1.107 6(3)               |
| C(7)             | $0.864\ 2(2)$                 | $0.708 \ 4(7)$              | $1.017\ 2(3)$            |
| C(8)             | 0.8345(2)                     | 0.8731(6)                   | 0.953 9(3)               |
| C(9)             | $0.882 \ 3(2)$                | 1.026 2(6)                  | 0.985 5(3)               |
| C(10)            | 0.9174(2)                     | 1.073 2(6)                  | 1.095 0(3)               |
| C(11)            | 0.833 4(2)                    | 1.169 2(7)                  | 0.923 0(3)               |
| C(12)            | $0.033 \pm (2)$<br>0.787 6(2) | 1.150 2(7)<br>0.005 7(6)    | 0.010 2(3)               |
| C(13)            | 0.816.7(2)                    | 0.828 2(7)                  | 0.765 5(3)<br>0.845 2(3) |
| Clis             | 0.767 2(2)                    | 0.678.3(7)                  | 0.8091(3)                |
| C(16)            | 0.738 9(2)                    | 0.6475(7)                   | 0.7029(3)                |
| C(17)            | 0.707 6(2)                    | $0.816\ 0(7)$               | 0.6494(3)                |
| C(18)            | 0.755 6(2)                    | 0.968 6(7)                  | 0.673 8(3)               |
| C(19)            | 0.717 8(2)                    | 1.133 8(7)                  | 0.624 7(3)               |
| C(20)            | $0.678\ 5(2)$                 | $1.111\ 2(7)$               | 0.518 7(3)               |
| C(21)            | $0.633\ 6(2)$                 | $0.954 \ 1(7)$              | $0.488\ 7(3)$            |
| C(22)            | $0.668 \ 4(2)$                | 0.787 7(7)                  | $0.542\ 7(3)$            |
| C(23)            | 0.933 1(3)                    | 0.768 2(8)                  | 1.305 2(4)               |
| C(24)            | 1.023 1(2)                    | 0.925 8(8)                  | 1.305 6(3)               |
| C(25)            | 0.984 2(2)                    | 1.120 6(7)                  | $1.112 \ 3(3)$           |
| C(20)            | 0.776 2(2)                    | $0.920\ 8(7)$<br>0.762 0(7) | 0.904 4(3)               |
| C(21)            | 0.803 2(2)                    | 0.703 0(7)                  | 0.636 9(3)               |
| C(29)            | $0.609 \ 2(2)$                | 0.926 6(9)                  | 0.0302(3)                |
| C(30)            | 0.5788(2)                     | 0.994 7(8)                  | 0.508 1(4)               |
| O(1)             | $0.960 \ 1(2)$                | 1.1310(6)                   | 1.386 9(2)               |
| O(2)             | $0.626\ 3(2)$                 | $0.645\ 5(5)$               | 0.527 1(2)               |
| (b) Calcula      | ated positions for h          | ydrogen atoms               |                          |
| Atom             | xla                           | v/b                         | zlc                      |
| H(11)            | 0.845(1(2))                   | 1.205 8(0)                  | 1,105 5(3)               |
| $\mathbf{H}(12)$ | $0.894\ 5(2)$                 | 1.3375(0)                   | 1.093 9(3)               |
| H(21)            | 0.901 1(2)                    | 1.351 8(8)                  | 1.248 3(3)               |
| H(22)            | $0.967 \ 2(2)$                | 1.295 7(8)                  | 1.2510(3)                |
| H(31)            | 0.881.6(2)                    | $1.066\ 5(7)$               | 1.271 3(3)               |
| H(5)             | $0.872 \ 9(2)$                | $0.905\ 3(6)$               | 1.147 5(3)               |
| H(61)            | 0.9597(2)                     | $0.762\ 2(7)$               | 1.091 6(3)               |
| H(62)            | 0.934 1(2)                    | 0.644 8(7)                  | 1.152 5(3)               |
| H(71)            | 0.873 7(2)                    | 0.6205(7)                   | 0.978 8(3)               |
| H(12)            | 0.833 2(2)                    | 0.007 0(7)<br>0.076 1(6)    | 1.030 7(3)               |
| H(111)           | 0.8107(2)<br>0.8891(2)        | 1.280.8(7)                  | 0.943.9(3)               |
| H(112)           | 0.8198(2)                     | 1.234 8(7)                  | 0.9324(3)                |
| <b>H</b> (121)   | $0.870\ 3(2)$                 | 1.120 7(7)                  | $0.808\ 2(3)$            |
| H(122)           | $0.812\ 3(2)$                 | $1.257 \ 1(7)$              | 0.7804(3)                |
| H(13)            | 0.7511(2)                     | 1.027 9(6)                  | 0.793 9(3)               |
| H(151)           | $0.733\ 0(2)$                 | 0.709 5(7)                  | $0.825\ 2(3)$            |
| H(152)           | $0.787\ 7(2)$                 | $0.567 \ 0(7)$              | $0.842\ 3(3)$            |
| H(161)           | 0.7724(2)                     | $0.612\ 1(7)$               | 0.685 8(3)               |
| H(162)           | 0.707 0(2)                    | 0.551 8(7)                  | 0.684 5(3)               |
| H(17)            | 0.0774(2)<br>0.747.2(9)       | 0.852 5(7)                  | 0.073 1(3)               |
| H(191)           | 0.747 3(2)                    | 1.2340(7)<br>1 161 6(7)     | 0.030 3(3)               |
| H(201)           | $0.003 \pm (2)$<br>0.653 2(2) | 1.1010(7)<br>1.2203(7)      | 0.0031(3)<br>0.4932(3)   |
| H(202)           | 0.7075(2)                     | 1.096 6(7)                  | 0.4901(3)                |
| H(22)            | 0.697 9(2)                    | 0.757 8(7)                  | 0.516 8(3)               |
| H(231)           | 0.886 5(3)                    | 0.766 1(8)                  | 1.2745(4)                |
| H(232)           | 0.9497(3)                     | 0.789 5(8)                  | 1.374 7(4)               |
| H(233)           | $0.948 \ 9(3)$                | $0.652\ 7(8)$               | 1.2949(4)                |
| H(241)           | 1.038 6(2)                    | 1.0327(8)                   | 1.286 4(3)               |
| H(242)           | 1.033 5(2)                    | 0.8187(8)                   | 1.279 2(3)               |
| H(243)           | 1.043 8(2)                    | 0.017 7(8)                  | 1.070 0(3)               |
| H(259)           | 0.981 9(9)                    | 1.214.7(7)                  | 1.064 2(3)               |
| H(253)           | 1.005 0(2)                    | 1.017 2(7)                  | 1,105 0(3)               |
| H(261)           | 0.756 8(2)                    | 1.030 5(7)                  | 0.922 5(3)               |
| H(262)           | 0.786 8(2)                    | 0.958 2(7)                  | 1.031 2(3)               |
| H(263)           | $0.746\ 1(2)$                 | $0.826\ 3(7)$               | 0.943 2(3)               |
| H(271)           | $0.904\ 2(2)$                 | $0.863\ 2(7)$               | $0.847\ 2(3)$            |
| H(272)           | 0.865 3(2)                    | 0.701 3(7)                  | 0.777 7(3)               |

|        | TABLE 2        | (continued)    |               |
|--------|----------------|----------------|---------------|
| Atom   | x/a            | y/b            | z c           |
| H(273) | 0.895 5(2)     | 0.678 7(7)     | 0.8924(3)     |
| H(281) | 0.8277(2)      | $0.824\ 5(8)$  | $0.656\ 7(3)$ |
| H(282) | 0.823 0(2)     | 1.038 8(8)     | 0.662 8(3)    |
| H(283) | 0.7820(3)      | 0.943 2(8)     | 0.565 5(3)    |
| H(291) | 0.5801(3)      | 0.823 3(9)     | 0.360 0(3)    |
| H(292) | 0.645 0(3)     | 0.905 3(9)     | 0.368 3(3)    |
| H(293) | 0.5861(3)      | 1.034 6(9)     | 0.347 6(3)    |
| H(301) | $0.595\ 2(2)$  | 1.011 1(8)     | 0.577 8(4)    |
| H(302) | $0.544\ 5(2)$  | 1.905 5(8)     | 0.4849(4)     |
| H(303) | $0.562 \ 3(2)$ | 1.109 1(8)     | 0.475 1(4)    |
| H(01)  | $0.960\ 2(2)$  | 1.017 9(6)     | 1.419 0(2)    |
| H(02)  | 0.606 0(2)     | $0.611 \ 4(5)$ | $0.458\ 8(2)$ |

# TABLE 3

# Atom positional parameters for 22α-hydroxy-3,4secostictan-3-oic acid (3b)

| (a) Non-h            | ydrogen atoms              |                                 |                            |
|----------------------|----------------------------|---------------------------------|----------------------------|
| Atom                 | x a                        | v/b                             | z c                        |
| C(1)                 | 0.179 1(24)                | 0.8330(11)                      | 0.265 3(32)                |
| C(2)                 | $0.224 \ 8(22)$            | $0.886\ 8(10)$                  | $0.286\ 6(34)$             |
| C(3)                 | $0.150\ 3(28)$             | $0.913\ 2(11)$                  | 0.4251(37)                 |
| C(4)                 | 0.5789(24)                 | 0.791.3(11)                     | 0.191 0(38)                |
| $\tilde{C}(\bar{5})$ | 0.450.5(23)                | 0.797 0(10)                     | 0.301.0(32)                |
| Č(6)                 | $0.465\ 0(22)$             | 0.761.3(11)                     | 0.484(29)                  |
| Č(7)                 | 0.4007(21)                 | 0.7114(10)                      | $0.415\ 2(32)$             |
| Č(8)                 | 0.220.8(24)                | 0.712 0(10)                     | 0.269.3(34)                |
| Č(9)                 | 0.1895(21)                 | 0.750 2(10)                     | 0.086.9(32)                |
| clin                 | 0.268.9(22)                | 0.801.5(10)                     | 0.1474(30)                 |
| čiń                  | 0.010.5(23)                | 0.7524(10)                      | -0.0534(33)                |
| č(12)                | -0.0561(22)                | 0.7034(9)                       | -0.144.6(29)               |
| $\tilde{C}(13)$      | -0.020.8(21)               | 0.663.3(10)                     | 0.024.5(30)                |
| C(14)                | 0.161.9(24)                | 0.661.5(0)                      | 0 150 7(33)                |
| C(15)                | 0.1015(24)                 | 0.0010(0)                       | 0.330 6(39)                |
| C(16)                | 0.1123(24)                 | 0.5736(10)                      | 0.330 0(32)                |
|                      | -0.063.7(25)               | 0.579.4(10)                     | 0.230 5(34)                |
|                      | -0.0037(23)                | $0.575 \pm (10)$<br>0.614 0(11) | 0.140 0(00)                |
| C(10)                | -0.100 + (24)              | 0.014 0(11)                     | -0.0012(34)                |
| C(19)                | -0.2009(20)                | 0.024 0(10)                     | -0.118 2(34)               |
| C(20)                | -0.3930(20)                | 0.5778(10)                      |                            |
| C(21)                | -0.3300(27)                | 0.340.8(11)                     | 0.009 9(37)                |
| C(22)                | -0.1001(23)                | 0.5319(11)                      | $0.081\ 2(34)$             |
| C(23)                | 0.596 2(30)                | $0.744 \ 6(12)$                 | 0.094 3(42)                |
| C(24)                | 0.741 8(27)                | 0.8061(14)                      | 0.3575(41)                 |
| C(25)                | $0.255\ 2(26)$             | 0.8292(10)                      | -0.0605(31)                |
| C(26)                | 0.1235(21)                 | 0.725 8(10)                     | 0.419 5(32)                |
| C(27)                | 0.261 1(21)                | 0.647 1(11)                     | $0.016\ 9(28)$             |
| C(28)                | -0.0720(24)                | 0.594 8(10)                     | -0.2445(31)                |
| C(29)                | -0.4260(27)                | 0.491 8(10)                     | -0.0760(44)                |
| C(30)                | -0.388 2(26)               | 0.5564(11)                      | 0.198 9(35)                |
| 0(1)                 | 0.2187(21)                 | $0.955\ 3(10)$                  | 0.479 3(36)                |
| O(2)                 | 0.043 9(22)                | $0.900 \ 1(9)$                  | 0.468 5(30)                |
| O(3)                 | $-0.105 \ 1(17)$           | 0.499 7(9)                      | $0.255\ 1(24)$             |
| (b) Calcul           | ated positions for         | hydrogen atoms                  |                            |
| Atom                 | rla                        | w/h                             | 7/0                        |
| <b>U</b> (11)        | 0.051.2(94)                | 0 890 4(11)                     | 0 170 4(29)                |
| $\mathbf{U}(10)$     | 0.001 3(24)                | 0.0294(11)                      | 0.179 4(32)                |
| <b>U</b> (91)        | $0.210 \ 3(24)$            | 0.0100(11)                      | 0.420 4(02)                |
| H(22)                | 0.161 1(22)<br>0.353 7(22) | 0.802 5(10)                     | 0.1200(34)<br>0.2570(24)   |
| H(A)                 | 0.555 7(22)                | 0.830 8(10)                     | 0.051 7(39)                |
| H(F)                 | 0.028 0(24)                | 0.8142(11)                      | 0.001 7(00)                |
| H(61)                | 0.404 4(23)                | 0.031 7(10)                     | 0.579 6(90)                |
| H(69)                | 0.4007(22)                 | 0.770 2(11)                     | 0.578 0(29)                |
| H(71)                | 0.380 8(22)                | 0.7082(11)<br>0.6055(10)        | 0.002 4(20)                |
| H(79)                | 0.4084(21)<br>0.4141(21)   | 0.095 5(10)                     | 0.526.6(32)<br>0.555.4(39) |
| H(0)                 | 0.3131(21)<br>0.9555(91)   | 0.0300(10)                      | -0.007 5(32)               |
| H(1)                 | 0.205 5(21)                | $0.730 \pm (10)$<br>0.776 5(10) | -0.007 3(32)               |
| T(111)               | -0.000 4(20)               | $0.770 \ 5(10)$                 |                            |
| H(191)               | -0.000 2(20)               | 0.705 0/0)                      | _0.041 1(00)               |
| H(121)               | -0.1600(22)                | 0.100 8(8)                      | 0.221 5(29)                |
| H(122)               | -0.004 4(22)               | 0.000 0(0)                      | 0 145 5/20                 |
| H(151)               | -0.070 0(21)               | 0.071 2(10)                     | 0.140 0(30)                |
| H(159)               | 0.100 0(20)                | 0.614.8(10)                     | 0.400 0(02)                |
| H(161)               | 0.320 4(20)                | 0 546 6(10)                     | 0.355 1(32)                |
| H(162)               | 0.140 0(24)<br>0.153 1(24) | 0.562 2(10)                     | 0 104 2/34)                |
| $H(17)^{2}$          | -0.1031(24)                | 0.502 2(10)                     | 0.270 5/35)                |
| ··(*/)               | -0.101 3(20)               | 0.000 0(10)                     | 0.210 0(30)                |

| TABLE 3          | (co <b>ntin</b> ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x a              | y/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | z c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.3084(23)      | 0.6407(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.016\ 1(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -0.3276(23)      | $0.648\ 2(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.2540(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.517 1(26)     | 0.5874(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.2140(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.3807(26)      | 0.561 8(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.3191(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.1385(23)      | 0.5164(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0540(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.468 6(30)      | $0.738\ 5(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.016\ 9(42)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $0.646\ 1(30)$   | $0.718\ 6(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.221 \ 4(42)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $0.653 \ 4(30)$  | $0.740 \ 8(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0220(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.752 \ 6(27)$  | $0.837\ 7(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.456\ 0(41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.830 1(27)      | $0.807\ 7(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.282\ 3(41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.761 7(27)      | $0.774 \ 3(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.456\ 5(41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $0.302 \ 9(26)$  | $0.804\ 2(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1457(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.339\ 0(26)$   | $0.858 \ 5(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001 1(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.142 \ 0(26)$  | 0.843 3(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.168 6(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.018 8(21)      | $0.741\ 3(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.298 1(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.183 4(21)      | $0.752 \ 9(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.537 \ 1(32)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $0.087 \ 1(21)$  | $0.696 \ 4(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.497 3(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2084(21)       | $0.664 \ 4(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1376(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.267 \ 4(21)$  | $0.608\ 7(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.005\ 7(28)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.380 6(21)      | $0.661 \ 0(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.099 3(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.035\ 2(24)$   | 0.575 3(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.2337(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.0845(24)      | $0.626\ 1(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.344 9(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -0.175 5(24)     | $0.571 \ 8(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.3133(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.548 9(27)     | $0.504 \ 3(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1401(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.417 1(27)     | $0.461\ 2(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.027 3(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.388 8(27)     | $0.481 \ 4(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.2065(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $-0.360\ 3(26)$  | 0.5941(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.195 0(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $-0.318 \ 8(26)$ | $0.541\ 7(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.354 8(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.514 7(26)     | $0.552 \ 3(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.168 8(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | TABLE         3 $x/a$ -0.308 4(23)           -0.327 6(23)         -0.517 1(26)           -0.380 7(26)         -0.138 5(23)           -0.468 6(30)         0.646 1(30)           0.653 4(30)         0.653 4(30)           0.752 6(27)         0.830 1(27)           0.761 7(27)         0.302 9(26)           0.339 0(26)         0.142 0(26)           0.183 4(21)         0.183 4(21)           0.267 4(21)         0.380 6(21)           0.352 2(24)         -0.084 5(24)           -0.175 5(24)         -0.548 9(27)           -0.388 8(27)         -0.417 1(27)           -0.388 8(27)         -0.318 8(26)           -0.318 8(26)         -0.514 7(26) | TABLE 3(continued) $x/a$ $y/b$ $-0.308$ $4(23)$ $0.640$ $-0.327$ $6(23)$ $0.648$ $2(10)$ $-0.517$ $1(26)$ $-0.517$ $1(26)$ $0.587$ $4(10)$ $-0.380$ $7(26)$ $-0.138$ $5(23)$ $0.516$ $4(11)$ $0.468$ $6(30)$ $0.738$ $5(12)$ $0.646$ $1(30)$ $0.718$ $6(12)$ $0.653$ $4(30)$ $0.752$ $6(27)$ $0.837$ $0.643$ $4(30)$ $0.740$ $0.752$ $6(27)$ $0.837$ $0.752$ $6(27)$ $0.837$ $0.761$ $7(27)$ $0.774$ $0.761$ $7(27)$ $0.774$ $0.302$ $9(26)$ $0.804$ $0.339$ $0(26)$ $0.8585$ $0.142$ $0(26)$ $0.843$ $0.183$ $4(21)$ $0.752$ $9(10)$ $0.208$ $4(21)$ $0.664$ $4(11)$ $0.267$ $4(21)$ $0.664$ $0.267$ $4(21)$ $0.664$ $0.267$ $4(21)$ $0.661$ $0.175$ $5(24)$ $0.5773$ $0.038$ $6(27)$ $0.504$ $0.0384$ $5(27)$ $0.504$ $0.0384$ $5(24)$ $0.62611(10)$ $-0.388$ $9(27)$ $0.504$ $0.318$ $8(26)$ $0.594$ $0.318$ $8(26)$ $0.5514$ $7(11)$ $-0.514$ $7(26)$ |

will generally result in ring A also adopting a twisted boat conformation. In accord with these observations the o.r.d. curves of the ketol (6) and of alisol-A (23,24)acetonide 11-monobromoacetate differ significantly from those of other 3-oxo- $4\alpha$ ,  $4\beta$ -dimethyl steroids and triterpenoids in which ring A adopts the more normal flattened

chair conformation. On the other hand ring A retains a chair conformation if C(3) is equatorially or axially <sup>13</sup> substituted. <sup>1</sup>H N.m.r. data support these observations.

[1/1788 Received, 17th November, 1981]

REFERENCES

<sup>1</sup> Part 15, R. E. Corbett and A. L. Wilkins, Aust. J. Chem.,

1977, **30**, 2329. <sup>2</sup> W. J. Chin, R. E. Corbett, C. K. Heng, and A. L. Wilkins, J. Chem. Soc., Perkin Trans. 1, 1973, 1437.

<sup>3</sup> R. E. Corbett, C. K. Heng, and A. L. Wilkins, Aust. J. Chem., 1976, 29, 2567.

<sup>4</sup> P. S. Rao and T. R. Seshadri, Indian J. Chem., 1968, 6, 393.

<sup>5</sup> R. E. Corbett and S. D. Cumming, J. Chem. Soc. C, 1971, 955.
<sup>6</sup> E. M. Goh, P. T. Holland, and A. L. Wilkins, J. Chem. Soc., Perkin Trans. 1, 1978, 1560.

7 R. E. Corbett and A. L. Wilkins, J. Chem. Soc., Perkin Trans. 1, 1976, 857

<sup>8</sup> R. E. Corbett and A. L. Wilkins, J. Chem. Soc., Perkin Trans. 1, 1976, 1316.

P. Main, L. Lessinger, and M. M. Woolfson, 'MULTAN 77,' University of York, 1977.

<sup>10</sup> G. M. Sheldrick, 'An X-Ray Crystal Structure Computing Package, University of Cambridge, 1976. <sup>11</sup> W. H. Zachariasen, Acta Crystallogr., 1962, **16**, 1139; 1965,

18, 705. <sup>12</sup> W. S. Murphy, D. Cocker, G. Ferguson, and M. Khan, J.

<sup>13</sup> D. F. Rendle and J. Trotter, J. Chem. Soc., Perkin Trans. 2, 1975, 1361.

14 P. J. Roberts, J. C. Coppola, N. W. Isaacs, and O. Kennard, J. Chem. Soc., Perkin Trans. 2, 1973, 774. <sup>15</sup> T. Murata, Y. Imai, T. Hirata, and M. Miyamoto, Chem.

Pharm. Bull., 1970, 18, 1347. <sup>16</sup> K. Kamiya, T. Murata, and M. Nichikawa, Chem. Pharm.

Bull., 1970, 18, 1362.